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General anaesthesia decreases the 
uniqueness of brain functional connectivity 
across individuals and species
 

The human brain is characterized by idiosyncratic patterns of spontaneous 
thought, rendering each brain uniquely identifiable from its neural activity. 
However, deep general anaesthesia suppresses subjective experience. Does 
it also suppress what makes each brain unique? Here we used functional MRI 
scans acquired under the effects of the general anaesthetics sevoflurane 
and propofol to determine whether a na es th et ic -i nduced u nc on sc io-
usness diminishes the uniqueness o         f t    h e h  u m  an brain, both with respect 
to the brains of other individuals and the brains of another species. Using 
functional connectivity, we report that under anaesthesia individual brains 
become less self-similar and less distinguishable from each other. Loss 
of distinctiveness is highly organized: it co-localizes with the archetypal 
sensory–association axis, correlating with genetic and morphometric 
markers of phylogenetic differences between humans and other primates. 
This effect is more evident at greater anaesthetic depths, reproducible across 
sevoflurane and propofol and reversed upon recovery. Providing convergent 
evidence, we show that anaesthesia shifts the functional connectivity of the 
human brain closer to the functional connectivity of the macaque brain in a 
low-dimensional space. Finally, anaesthesia diminishes the match between 
spontaneous brain activity and cognitive brain patterns aggregated from 
the Neurosynth meta-analytic engine. Collectively, the present results reveal 
that anaesthetized human brains are not only less distinguishable from each 
other, but also less distinguishable from the brains of other primates, with 
specifically human-expanded regions being the most affected by anaesthesia.

Consciousness—what is lost during anaesthesia and dreamless sleep 
and restored upon awakening—is inherently subjective to each indi-
vidual, as indicated by the near-synonymous use of the terms sub-
jective experience and first-person experience. In other words, each 
individual’s consciousness is unique to them. This raises an intrigu-
ing question: if consciousness is what makes each of us unique, do we 
become more alike when consciousness is lost?

A temporary state of unconsciousness can be induced by anaes-
thetics. The medical benefits of anaesthesia are well established, but 

the value of its use as a tool to study the functioning of the brain is 
also increasing1–5. Unlike spontaneous sleep, anaesthetic-induced 
unconsciousness (indicated by a loss of behavioural responsiveness) 
is amenable to experimental control: it can be reliably induced, main-
tained and reversed.

In this Article, we combine loss and recovery of conscious-
ness induced by deep anaesthesia using different anaesthetics—
sevoflurane6,7 and propofol8,9—with functional MRI (fMRI) recordings 
of spontaneous activity in the human brain. We ask: does the human 
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off-diagonal entries, which represent self–other similarity (Fig. 1a). This 
was consistent with previous work on functional connectome finger-
printing using test–retest scans10. In contrast, the diagonal was barely 
discernible when awake scans were compared against anaesthetized 
ones, indicative of low identifiability of individuals (Fig. 1b). Indeed, 
self–self correlations between awake and anaesthetized brains were 
significantly diminished compared with awake–recovery self-similarity 
(Fig. 1c). Likewise, differential identifiability (the difference between 
self–self correlation and the mean correlation between an individual’s 
scan at time tx and every other individual’s scan at time ty) was signifi-
cantly reduced when considering anaesthetized brains (Fig. 1d). Col-
lectively, these results demonstrate that anaesthetic-induced loss of 
responsiveness manifests as decreased distinctiveness of the individual 
functional connectome. Analogous results were obtained at different 
depths of sevoflurane anaesthesia (Extended Data Fig. 1). In the remain-
der of this subsection, we identify the anatomical organization of func-
tional connections that contribute to this change in distinctiveness.

We quantify edgewise identifiability using the intra-class cor-
relation coefficient (ICC), which describes how strongly elements in 
the same group resemble each other, for a given score. In this con-
text, we obtained an ICC value for each edge (the FC value between 
two brain regions), which indicates how well the weight of that edge 
separates within and between individuals10. Thus, the higher the ICC 
of an edge, the higher its identifiability (Methods)10. The difference in 
edgewise identifiability between awake–recovery and awake–anaes-
thesia therefore indicates the extent to which the identifiability of each 
functional edge is affected by anaesthesia. In other words, the matrix 
of ICC differences reflects, for each edge, the gain in identifiability 
that one obtains with consciousness (that is, how much extra ability to 
discriminate individuals there is when using the recovery scan instead 
of the anaesthetized scan).

We found that sevoflurane anaesthesia reduced the contribution 
to identifiability of virtually all edges (Fig. 2a). This pattern was nei-
ther uniform nor random. Rather, the anaesthetic-induced change in 
identifiability of each functional connection was proportional to its 
contribution to identifiability during wakefulness (that is, between 
awake and recovery) (Supplementary Fig. 1). Additionally, the preva-
lence of FC edges that were capable of reliably identifying individuals 
(that is, whose confidence interval did not include zero) was drastically 
diminished under anaesthesia (Supplementary Fig. 2).

Notably, the most affected functional connections are those con-
necting two regions of transmodal cortex (Fig. 2b; see Supplementary 
Fig. 3 for alternative comparisons between different edge types). This is 
noteworthy because regions of transmodal cortex are known to provide 
the largest contribution to identifiability in the awake resting brain10,12. 
In other words, the more a functional edge contributes to identifiability 
in awake individuals, the more it is affected by anaesthesia. Functional 
connections within transmodal cortex are particularly vulnerable to 
this perturbation, losing their distinctiveness and becoming more 
similar across individuals.

Next, we localized regional changes in identifiability, quantified 
as the mean change in edgewise identifiability across each region’s 
edges. The greatest decreases in identifiability occurred in regions of 
the default mode and fronto-parietal networks, as well as the trans-
modal cortex more broadly, whereas unimodal (somatomotor and 
visual) cortices were least affected (Fig. 2c and Supplementary Fig. 4). 
This regional pattern of unimodal–transmodal distinction was con-
firmed by a significant spatial correlation with the brain’s archetypal 
sensory–association axis (Spearman’s ρ = 0.67; pspin < 0.001; n = 200 
regions; Fig. 2d)34. This region-wise result was consistent with our 
observation that the most affected functional connections were those 
linking transmodal regions (Fig. 2b). Given that the FC of the trans-
modal cortex exhibits the greatest inter-individual variability in the 
awake state35, we sought to test whether the anaesthesia-induced 
decrease in identifiability preferentially targets these regions. Indeed, 

brain lose its distinctiveness when unconscious? We attack this ques-
tion from three conceptual angles. First, we compare brains within 
and across individuals. Seminal work revealed that the patterns of 
functional connectivity (FC) between brain regions are reliably dif-
ferent across individuals, enabling brain fingerprinting of individuals 
based on fMRI scans10–14. Therefore, here we use functional connectome 
fingerprinting to evaluate whether individuals become less distin-
guishable when under deep anaesthesia, which is presumed to induce 
unconsciousness (note that this is different from mere sedation, during 
which participants are still responsive and conscious, albeit sluggish14).

Second, we assess how well each individual’s brain activity across 
different levels of anaesthesia corresponds to canonical brain maps 
of cognitive operations obtained from meta-analytic aggregation of 
>14,000 neuroimaging experiments15. Although our study concerns 
task-free fMRI, we reasoned that even in the absence of any tasks the 
brain may still spontaneously engage states pertaining to various 
cognitive operations16–22. In contrast, this should not occur during 
loss of consciousness, when even intrinsically driven cognition should 
be abolished. This paradigm is inspired by evidence that the ability 
to detect brain responses to specific tasks (such as imagine playing 
tennis or imagine navigating around your house) is a robust marker of 
consciousness even in individuals who are behaviourally unresponsive 
due to disorders of consciousness23–32.

Finally, we ask whether anaesthesia makes the FC of the human 
brain less distinctive from other species—in other words, reducing the 
distinctiveness of our species compared with other primates.

Results
In this Article, we consider resting state fMRI data obtained from n = 15 
healthy volunteers at baseline and after loss of behavioural responsive-
ness induced by different levels of the inhalational anaesthetic sevo-
flurane: at electroencephalogram (EEG) burst suppression and 3 and 
2 vol%, as well as during post-anaesthetic recovery of responsiveness6,33. 
We replicate our results in an independent dataset of resting state fMRI 
results from n = 16 healthy volunteers scanned before, during and after 
loss of behavioural responsiveness induced by the intravenous anaes-
thetic propofol8,9.

Reduced identifiability of the anaesthetized brain
First we tested the hypothesis that anaesthesia abolishes each indi-
vidual’s idiosyncratic patterns of spontaneous neural activity, making 
the corresponding patterns of FC more difficult to distinguish across 
individuals. Specifically, we correlated each individual’s FC during 
wakefulness with each individual’s FC during either post-anaesthetic 
recovery of responsiveness or anaesthesia. This produced an identifi-
ability matrix where the rows and columns are individuals and each 
entry represents their connectomes’ similarity (correlation) (Fig. 1a).

Successful brain fingerprinting requires two conditions. The first is 
persistency: an individual’s FC needs to be consistent over time in order 
to be used to identify the individual. The second is diversity: the FCs 
of distinct individuals need to be different from each other, to avoid 
confusing individuals. If FC patterns are all the same, identifiability 
will be low even though FC persists over time. In contrast, if FC is very 
variable over time identifiability will be low, even if FC configurations 
are diverse across individuals. We quantify persistency as self–self 
correlation across scans (correlation between FC at time 1 and time 2, 
for the same individual). We quantify (lack of) diversity as the mean 
self–other correlation: the mean correlation between an individual’s 
FC at time 1 and every other individual’s FC at time 2. Finally, differential 
identifiability is the difference between self–self correlation (persis-
tency) and self–other correlation (lack of diversity).

We observed that when comparing two scans of the same indi-
vidual while awake, it was easy to distinguish self from other. This iden-
tifiability can be discerned as a clear pattern along the matrix diagonal, 
representing self–self similarity, which is clearly distinguishable from 
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patterns of decreased identifiability were correlated with the map of 
inter-individual variability developed by Mueller and colleagues35 
(Spearman’s ρ = 0.63; pspin < 0.001; n = 200 regions; Fig. 2d). The cor-
relations remained significant after regressing out of the regional ICC 
map, a map of the human brain’s regional signal-to-noise ratio of the 
fMRI signal from ref. 36 (Supplementary Fig. 5). Analogous results 
were observed at both the edge level and regional level when only 
including ICC values whose confidence interval did not include zero 
(Supplementary Fig. 2).

Having observed that changes in regional identifiability are more 
pronounced where individuals most differ in terms of FC, we further 
investigated whether a more general phenomenon is at play. Do 
anaesthetic-induced changes in regional identifiability reflect not only 
distinctiveness between individuals, but more generally distinctiveness 
between species? Although we pursue this in more detail in a subse-
quent section, here we show that changes in regional identifiability 
correlate with molecular and morphometric markers of phylogenetic 
cortical differentiation between human and non-human primates. 
Specifically, anaesthetic-induced changes in regional identifiability 
are spatially correlated with the cortical map of evolutionary expan-
sion between macaque and human37 (Spearman’s ρ = 0.35; pspin < 0.001; 
n = 200 regions; Fig. 2d), with greater change in distinctiveness being 
observed in phylogenetically newer regions. Likewise, we observed a 
significant spatial correlation between the regional changes in iden-
tifiability, and the regional mean expression of genes associated with 
so-called human accelerated regions (HAR) of the human genome 
pertaining to brain function and development (HAR–brain genes; 
Spearman’s ρ = 0.42; pspin < 0.001; n = 200 regions; Fig. 2d). These are 
genes associated with loci that displayed accelerated divergence in the 
human lineage compared with the chimpanzee, and therefore indicate 
evolution-related changes in the corresponding regions38. In other 
words, brain regions that exhibit greater change in distinctiveness also 
exhibit greater expression of human-accelerated genes. Altogether, 
anaesthesia selectively reduces the identifiability of brain regions that 
are most distinctive, both between individuals and between humans 
and non-human primates.

Correlation analysis cannot identify causal determinants of 
regional changes in identifiability. Nevertheless, multivariate analy-
sis can be helpful in providing insights beyond what is available from 
multiple individual correlations. Specifically, we can use dominance 
analysis to assess the relative importance of different canonical brain 
maps in predicting the regional distribution of identifiability changes39. 

Dominance analysis distributes the fit of the model across predic-
tors such that the contribution of each predictor can be assessed and 
compared with other predictors, reflecting the proportion of the vari-
ance jointly explained by all predictors that can be attributed to each 
predictor.

Together, the maps of inter-individual variability, archetypal axis, 
evolutionary expansion and HAR–brain gene expression accounted for 
51% of variance in the map of sevoflurane-induced regional changes in 
identifiability (Supplementary Fig. 6a)—significantly more than was 
accounted for by null maps with preserved spatial autocorrelation 
(Supplementary Fig. 6b). Archetypal axis and inter-individual vari-
ability were the most important predictors, accounting for 46.5 and 
36.0% of the explained variance, respectively, whereas HAR–brain gene 
expression and evolutionary expansion accounted for 12.4 and 5.0%, 
respectively (Supplementary Fig. 6a).

Decreased correspondence with canonical cognitive maps
An influential approach to the investigation of pathological or phar-
macological perturbations of consciousness is to determine whether 
cognitive processes can be algorithmically inferred (or decoded) from 
neural activity. For example, patients suffering from disorders of con-
sciousness may be asked to imagine playing tennis while in the scanner, 
to determine whether motion-related regions become reliably activated 
in response to a command, despite the absence of overt behavioural 
command following23,24). Although this is typically done in the presence 
of explicit tasks or other stimuli (for example, movie watching23,24,28), 
here we sought to investigate whether covert cognitive processes 
can be discerned from spontaneous neural activity more generally, 
through a comprehensive assay based on meta-analytic maps from  
thousands of neuroimaging experiments15,40. Specifically, across dif-
ferent levels of anaesthesia, we assessed how well each individual’s 
neural activity maps at each point in time, corresponded to 123 canoni-
cal brain maps obtained from meta-analytic aggregation of >14,000 
neuroimaging experiments15 (Fig. 3a; see Methods for details of how 
the Neurosynth brain maps were selected and Supplementary Table 1 
for the full list of terms included). For simplicity, hereafter we refer to 
this activity-based reverse inference approach as cognitive matching. 
Averaging across the scan duration provides, for each individual and 
each condition, an overall index of the quality of cognitive matching.

We found that as anaesthesia deepens (with an increasing concen-
tration of sevoflurane), the quality of cognitive matching deteriorates: 
the best spatial correlation between brain activity and meta-analytic 
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Fig. 1 | The identifiability of individual functional connectomes is diminished 
under sevoflurane anaesthesia. a, Identifiability matrix between wakefulness 
and post-anaesthetic recovery. The rate of successful identification is 93%.  
b, Identifiability matrix between wakefulness and sevoflurane (sevo) anaesthesia. 
In a and b, entries along the diagonal represent self–self similarity (correlation of 
FC patterns), whereas off-diagonal entries represent self–other similarity. c, Self–
self similarity is significantly higher between two conscious states than between 
wakefulness and anaesthesia (for awake versus recovery, mean = 0.60 and 
s.d. = 0.08; for awake versus anaesthesia, mean = 0.37 and s.d. = 0.08; t(14) = 8.36; 
P < 0.001; effect size (Hedge’s g) = 2.71; confidence interval (CI) = [2.22, 3.69]; 

two-sided t-test). d, Differential identifiability (the difference between self–self 
correlation and mean self–other correlation for each individual) is significantly 
higher between two conscious states than between wakefulness and anaesthesia 
(for awake versus recovery, mean = 0.19, s.d. = 0.06; awake–anaesthesia: 
mean = 0.07; s.d. = 0.09; t(14) = 4.79; P < 0.001; effect size (Hedge’s g) =1.57; 
CI = [1.08, 2.35]; two-sided t-test). For the box plots in c and d, the central lines 
indicate median values, the bounds of the boxes indicate the 25th and 75th 
percentiles, the whiskers indicate 1.5× the interquartile range and extreme 
values are shown as individual circles (n = 15 human volunteers). Source data are 
provided.
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brain maps from Neurosynth (averaged across the entire scan dura-
tion) was lower at deeper levels of anaesthesia (Fig. 3b). This trend was 
reversed upon recovery of responsiveness (Fig. 3b; full statistics shown 
in Supplementary Data 1). The anaesthetic-induced decrease in the 
quality of cognitive matching was more pronounced for Neurosynth 
maps that loaded onto the higher-order (transmodal/association) end 
of the brain’s archetypal axis (for example, cognitive control or emotion 
regulation) than for maps that loaded onto the unimodal/sensory end 
(for example, fixation and movement; Supplementary Fig. 7). In other 
words, anaesthesia diminishes the extent to which spontaneous brain 
activity reflects cognitive patterns from the literature, particularly 
for higher-order cognitive operations, potentially explaining why 
individual distinctiveness is suppressed by anaesthesia.

Anaesthesia shifts human FC closer to macaque FC
Finally, we investigated whether anaesthesia changes the similarity 
between FC of the human brain and FC of the macaque brain. We used 
fMRI data from n = 10 macaques scanned while awake41 and processed 
similarly to human data42, as well as independently processed fMRI data 
from The Virtual Brain project43,44, comprising n = 9 adult macaques 
that were lightly anaesthetized with 1.0–1.5% isoflurane. To enable com-
parison between the two species, we parcellated both the macaque and 
human data according to the regional mapping parcellation of Kötter 

and Wanke45, which was devised to enable inter-species comparisons 
and has recently been translated between macaque and human brains 
by ref. 46, such that each cortical region is anatomically matched to its 
homologue across the two species (see Supplementary Fig. 8).

We then used principal components analysis (PCA) to project 
all concatenated FC patterns across humans and macaques in a com-
mon low-dimensional space (see Methods). PCA is widely used for 
dimensionality reduction and the visualization of high-dimensional 
data because it provides a low-dimensional representation of the data 
while preserving as much of the original variability as possible. This 
approach enabled us to re-represent each individual’s FC as a point in 
a two-dimensional (2D) plane, where each dimension corresponded to 
one of the main axes of variation in the data. We could then follow how 
the location of individuals’ FC changed in this low-dimensional space 
as a function of anaesthesia.

We clearly observed that each condition (awake, recovery and 
various levels of sevoflurane anaesthesia) tended to occupy a differ-
ent region of the space spanned by the first two principal components 
(Fig. 4a). Since principal component 1 (PC1) appeared to primarily 
reflect the difference between one of our macaque datasets and all 
other data, we focused our main analysis on PC2, which captured 
the differences in human states (similar results were observed when 
considering both PC1 and PC2; Supplementary Figs. 9 and 10). It was 
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immediately apparent that as the dose of sevoflurane increased, the 
FC patterns of our human participants moved progressively further 
away along PC2 from their initial position during pre-anaesthesia 
wakefulness (red circles in Fig. 4a,b)—only to then return closest to their 
initial awake position upon post-anaesthetic recovery of wakefulness 
(purple circles in Fig. 4a,b). We formally quantified this shift in terms of 
Euclidean distance along PC2: we found that the human condition with 
the smallest PC2 distance from the awake human data was recovery, 
and deeper levels of sevoflurane anaesthesia corresponded to further 
distance away from awake along PC2 (Fig. 4c). At the same time, we 
observed that as the human anaesthetized FC patterns moved away 
from wakefulness, they also reduced their distance to the location of 
both macaque FC datasets along PC2 (Fig. 4d,e)—with burst suppres-
sion (the deepest level of human anaesthesia) being both furthest away 
from human wakeful FC (Fig. 4c) and closest to macaque FC along PC2 
(Fig. 4d,e). Analogous results were observed when considering the 
space of both of the first two principal components (Supplementary 
Figs. 9 and 10) or when using cosine distance instead of Euclidean 
distance (Supplementary Fig. 11). See also Supplementary Fig. 12 for 
a representation in the space of the first three principal components 
instead.

Altogether, this low-dimensional representation highlights how 
anaesthesia shifts the FC of the human brain away from wakefulness 
and closer to the FC of the non-human primate brain: the distance 
between human anaesthetized FC and macaque FC is smaller than the 
distance between human awake FC and macaque FC. This phenom-
enon is reversed upon post-anaesthetic recovery, whereupon human 
FC moves back near the original position that it occupied at baseline. 
These results complement our observation that anaesthetic-induced 
reduction in regional identifiability is most pronounced in regions of 
the human brain that are genetically most human specific (Fig. 2d).

Replication, robustness and sensitivity
Anaesthesia reduces within-state identifiability of the human func-
tional connectome. We have observed significantly reduced identifi-
ability between wakefulness and anaesthesia compared with between 
wakefulness and recovery (Fig. 1d). This means that, given a resting 
state fMRI scan of an awake individual, it is easier to tell apart a second 
awake scan of that same individual from other individuals’ awake scans, 
than to tell apart an anaesthetized scan of the same individual against 

anaesthetized scans of other people. Do these results tell us anything 
beyond the observation that anaesthesia deviates from the awake state 
more than recovery does? Presumably, baseline and recovery should 
be more similar than baseline and anaesthesia, because baseline and 
recovery are in some sense the same brain state (that is, wakefulness), 
whereas baseline and anaesthesia are radically different states. Indeed, 
this is precisely what our analysis of self–self correlations showed, by 
indicating reduced self-similarity between awake and anaesthesia than 
between awake and recovery (Fig. 1c).

However, reduced self–self correlation alone does not logi-
cally guarantee reduced identifiability. Identifiability could theo-
retically stay the same or even increase if the self–other correlations 
were to exhibit an equivalent or greater reduction than the self–self 
correlations.

To empirically demonstrate that these results are not simply due to 
comparing within-state correlations against between-state correlations 
(with state in this context referring to wakefulness or anaesthesia), we 
took advantage of the fact that our sevoflurane data included multiple 
scans obtained under anaesthesia. This allowed us to compare two 
conscious scans (baseline and recovery) and two anaesthetized scans: 
either vol 2 versus 3% sevoflurane or vol 3% sevoflurane versus burst 
suppression (as noted in ref. 47, when multiple scans are available this 
approach is preferable to comparing two halves of the same scanning 
session because the latter involves comparing the same person and 
scan against different people and scans, thereby confounding indi-
vidual identity and scan identity).

When comparing awake–recovery similarity against the similarity 
between vol 2 and 3% sevoflurane or between vol 3% sevoflurane and 
burst suppression, we found exactly the same pattern of results as in 
our main analysis (Supplementary Fig. 13). Self–self similarity was 
significantly diminished, not only between wakefulness and anaes-
thesia (as we previously showed), but also between two anaesthetized 
scans. Likewise, identifiability was also diminished under anaesthesia, 
delineating a clear unimodal–transmodal cortical pattern (Supple-
mentary Figs. 13 and 14). Specifically, we found that as anaesthesia 
deepened, both self-similarity and the difference between self–self 
and self–other correlations (that is, identifiability) were progressively 
reduced, with the two distributions increasingly overlapping (Extended 
Data Fig. 2). This pattern is the reverse of what was recently found by 
Colenbier et al.48, who showed that tightly controlled cognitive tasks 
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the central lines indicate median values, the bounds of the boxes indicate the 
25th and 75th percentiles, the whiskers indicate 1.5× the interquartile range and 
extreme values are shown as individual circles. P values were obtained from 
repeated-measures t-tests (two sided) and false discovery rate corrected for 
multiple comparisons. Significance values for comparisons with the awake data 
are shown in black and those for comparisons versus the recovery data are shown 
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increase self–other similarity but increase self–self similarity even 
more, thereby resulting in an overall increase in identifiability.

Overall, since these results were obtained from within-state com-
parisons (awake–recovery (that is, both conscious) versus anaesthe-
tized–anaesthetized), we can reject the possibility that changes in 
identifiability are merely a reflection of differences in brain states.

Robustness to scan duration. In addition to showing that anaesthesia 
reduces identifiability between different anaesthetized scans, we also 
demonstrated that anaesthetic-induced differences in self–self similar-
ity and identifiability were not due to limitations of our scan duration. 
First, each of our scans had the same duration (see Methods), meaning 
that we do not need to be concerned about differences in scan duration 
as a potential confound. Second, this duration (approximately 10 min) 
is clearly more than sufficient to enable excellent brain fingerprinting, 
with all but one individual (93%) being correctly identified when con-
scious in our awake–recovery data. This result is fully consistent with 
Van De Ville et al.12, who reported that just over one minute of resting 
state fMRI is sufficient to achieve over 90% successful identification 
from brain fingerprinting. Third, we showed that even when an anaes-
thetized FC was obtained from combining all of the blood oxygenation 
level-dependent (BOLD) signals acquired across the three sevoflurane 
conditions (vol 2%, vol 3% and burst suppression, which were tempo-
rally concatenated before obtaining correlations between regions), 
nevertheless identifiability and self–self similarity were still reduced 
under anaesthesia (Supplementary Fig. 15). Thus, in accordance with 
the brain fingerprinting literature, our results of anaesthetic-induced 

differences in self–self similarity and identifiability cannot be attrib-
uted to the scan duration being insufficient for fingerprinting. On the 
contrary, these results persist even after artificially stacking the deck 
in favour of anaesthesia by tripling the number of timepoints used for 
FC estimation, demonstrating their robustness.

Replication with propofol anaesthesia. We replicated our main 
results in a separate dataset of anaesthesia with the intravenous agent 
propofol8,9. Although this dataset did not reach the same depth of 
anaesthesia as was used in the main analysis, nevertheless the results 
are broadly consistent with what was observed under sevoflurane 
anaesthesia. Self–self similarity decreased during anaesthetic-induced 
loss of behavioural responsiveness (awake–recovery: mean = 0.68, 
s.d. = 0.07; awake–anaesthesia: mean = 0.48; s.d. = 0.13; t(15) = 6.81; 
P < 0.001; effect size (Hedge’s g) = 1.82; confidence interval = [1.32, 
2.74]) and so did differential identifiability (awake–recovery: 
mean = 0.20, s.d. = 0.06; awake–anaesthesia: mean = 0.08; s.d. = 0.13; 
t(15) = 4.35; P < 0.001; effect size (Hedge’s g) = 1.14; confidence inter-
val = [0.71, 1.77]; Extended Data Fig. 3). Likewise, the regional distri-
bution of propofol-induced changes in identifiability was also more 
pronounced in the default mode and fronto-parietal than somatomo-
tor and visual cortices, correlating with the sensory–association axis 
(Spearman’s ρ = 0.46; pspin < 0.001; n = 200 regions) (Extended Data 
Fig. 4). As for sevoflurane, this result was obtained both when consid-
ering the ICC of each edge and when only including ICC values whose 
confidence interval did not include zero (Supplementary Fig. 16). 
We also replicated the correlation between the propofol-induced 
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full statistical reporting. Source data are provided.
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regional change in identifiability and canonical maps of inter-individual 
variability (Spearman’s ρ = 0.43; pspin < 0.001; n = 200 regions), evolu-
tionary cortical expansion (Spearman’s ρ = 0.28; pspin = 0.001; n = 200 
regions) and expression of HAR–brain genes (Spearman’s ρ = 0.30; 
pspin < 0.001; n = 200 regions) (Extended Data Fig. 4). Dominance analy-
sis showed that the four canonical maps accounted for 27% of variance 
in the map of propofol-induced changes in regional identifiability, 
which was significantly more than expected from random spatial 
autocorrelation-preserving maps (P < 0.001), with archetypal axis 
and inter-individual variability once again being the most important 
predictors (Supplementary Fig. 17).

The cognitive matching results from Neurosynth did not indicate 
statistically significant differences between propofol anaesthesia 
and either baseline or post-anaesthetic recovery of consciousness in 
terms of the maximum observed correlation between brain activity 
and meta-analytic maps (Extended Data Fig. 5 and Supplementary 
Data 1). However, if instead of only considering the best correlation we 
considered the average magnitude of correlations between brain activ-
ity and all Neurosynth maps, we found significant differences between 
baseline and anaesthesia, both in the sevoflurane and propofol datasets 
(Extended Data Fig. 6 and Supplementary Data 1). This latter analysis 
may be interpreted as the overall ability of meta-analytic patterns to 
recapitulate patterns of spontaneous brain activity. We also found that 
propofol anaesthesia, albeit less deep than the sevoflurane anaesthesia 
from our main analysis, shifted human FC away from wakefulness and 
towards the location of macaque FC (both awake and anaesthetized) 
along PC2 of a low-dimensional space obtained from PCA (Extended 
Data Fig. 7, Supplementary Fig. 18 and Supplementary Data 2).

Replication of cognitive matching with BrainMap. The results per-
taining to the quality of decoding of brain activity based on the Neu-
rosynth meta-analytic engine were also replicated using 66 unique 
behavioural domains obtained from an alternative meta-analytic data-
base, BrainMap49,50. Whereas Neurosynth has a data-driven bottom-up 
approach to taxonomy and uses an automated process to identify sta-
tistical associations between brain coordinates and studies involving 
specific cognitive and behavioural terms, BrainMap is expert-curated. 
Despite the differences between the two databases (for example, Brain-
Map explicitly excludes patient studies), we still found that the qual-
ity of decoding significantly deteriorated as the level of anaesthesia 
deepened, and was restored upon recovery of responsiveness (Supple-
mentary Fig. 19 and Supplementary Data 1). This successful replication 
indicates that our cognitive matching procedure is robust both to the 
specific choice of which terms to include (which are different between 
BrainMap and our intersection of Neurosynth and the Cognitive Atlas51) 
and the choice of meta-analytic database more broadly.

Robustness of the results to the use of different parcellations. The 
present results were obtained using the Schaefer functional atlas, which 
is based on fMRI data of awake individuals52. To the best of our knowl-
edge, there has been no report showing that the appropriateness of par-
cels in the Schaefer (or any other) functional atlas varies as a function 
of one’s state of consciousness. In fact, we and others have successfully 
used the Schaefer atlas in previous works involving anaesthetic, psy-
chedelic and pathological perturbations of consciousness53,54, includ-
ing for brain fingerprinting under altered states of consciousness47,55. 
Nevertheless, to show that our results are not critically dependent on 
the use of a functional parcellation derived from awake individuals, we 
replicated our results using an alternative parcellation of the cerebral 
cortex, the Desikan–Killiany atlas56 (Supplementary Figs. 20 and 21 and 
Supplementary Data 1). This atlas is based on anatomical landmarks; 
therefore, the appropriateness of its parcels cannot be expected to 
vary under anaesthesia. Likewise, similar results were obtained when 
including 32 subcortical regions as defined by the recent Tian atlas 
(Supplementary Fig. 22 and Supplementary Data 1). In particular, 

among subcortical structures, we observed an especially high regional 
contribution of the bilateral globus pallidus to the anaesthetic-induced 
change in regional identifiability. We also found that the Neurosynth 
cognitive matching results were robust to the choice of parcellation 
and inclusion of subcortex (Supplementary Fig. 23). The propofol 
results can also be replicated using the anatomical Desikan–Killiany 
atlas (Supplementary Figs. 24 and 25). Overall, we clearly demonstrate 
that our present results are robust to both parcellation size (from 68 
to 200 regions) and type (functional or anatomical).

Robustness against head motion. For the cognitive matching analy-
ses, we report the correlation of each contrast with the correspond-
ing difference in mean framewise displacement (Supplementary 
Data 1). Whereas a correlation was present in the propofol dataset, 
no significant correlation between cognitive matching results and 
head motion was found in the main sevoflurane dataset. For the fin-
gerprinting analysis, we observed that the results were not merely 
driven by the presence of high-motion participants. To demonstrate 
this, we repeated the analysis after applying a stringent criterion, 
excluding any participants with a mean framewise displacement of 
>0.3 in any condition, resulting in the exclusion of n = 3 participants, 
leaving n = 12 for analysis. The results were essentially unaltered, with 
anaesthesia significantly reducing both self–self similarity and dif-
ferential identifiability (Supplementary Fig. 26). The results from the 
low-dimensional projection of FC in PCA space were also unaltered 
upon excluding the same three high-motion individuals (Supplemen-
tary Fig. 27). Thus, our results were not unduly influenced by head 
motion in the scanner.

Discussion
Here we used pharmacological MRI under the effects of sevoflurane and 
propofol to determine whether anaesthetic-induced unconsciousness 
diminishes the distinctiveness of the human brain, both with respect to 
the brains of other individuals and the brain of another species entirely. 
We found that under deep anaesthesia, individual brains become less 
self-similar and less identifiable in terms of FC. Spatially, this effect is 
driven by reduced identifiability in transmodal association cortices.

Specifically, we found that the functional connections whose 
contributions to identifiability are most affected are those that most 
contribute to identifiability at baseline (Supplementary Fig. 1), which 
are also those connecting pairs of transmodal regions (Fig. 2b). These 
results are consistent with the notion that transmodal cortices, such 
as the default network and fronto-parietal control network, are par-
ticularly susceptible to anaesthesia and loss of consciousness more 
generally9,57,58. In addition, association cortices exhibit the greatest 
rate of inter-individual variability35. This variability is not mere noise, 
however, since the fronto-parietal and default networks consist-
ently provide the largest contribution to identifiability in conscious 
individuals10,12,14, indicating that their variability is individual specific. 
This may be attributed to the fact that transmodal association cortices 
have the longest maturation times in the human brain and the highest 
levels of synaptic plasticity and turnover34,59,60. Additionally, they also 
exhibit the lowest levels of intracortical myelination34,61, which is known 
to suppress plasticity both mechanically and chemically59,62. As a result, 
transmodal cortices are relatively unconstrained by the underlying 
patterns of microstructure and anatomical connectivity34,63–65 and 
are thus poised to change and adapt in response to environmental 
demands during the lifetime of each individual, which would account 
for their ability to encode individual-specific information in their FC. 
This individual-specific information in the functional interactions is 
then temporarily (and reversibly) suppressed by anaesthesia, as the 
present results indicate. Indeed, this account is consistent with recent 
evidence that individual differences in the FC and grey matter volume 
of frontal regions predict individual susceptibility to the behavioural 
effects of propofol sedation66.
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Indeed, we speculate that anaesthetic-induced suppres-
sion of individual-specific differences in FC may be due to the 
consciousness-suppressing effects of anaesthesia. The default network 
in particular is well known to engage in reflections about one’s own past 
and future, which by definition are unique to each individual67–69. By 
suppressing the idiosyncratic patterns of spontaneous thought that 
characterize the human brain even at rest, the present work indicates 
that anaesthetic-induced unconsciousness diminishes how such pat-
terns are encoded in the macroscale activity and connectivity of the 
brain. Indeed, we found that as anaesthesia deepens, spontaneous brain 
activity is increasingly less well-characterized in terms of meta-analytic 
patterns pertaining to cognitive operations—whether automatically 
defined or expert curated. This effect is reversed upon recovery, despite 
the lingering presence of anaesthetic in the bloodstream.

Taken together, the results of diminished cognitive matching and 
diminished identifiability driven by loss of self-similarity suggest the 
following tentative account. During wakefulness, brain activity is driven 
by a combination of spontaneous physiological processes and also the 
unique stream of consciousness of each individual, which brain activity 
must reflect. When consciousness is suppressed by anaesthesia, the 
physiological processes are perturbed, but most importantly the main 
driver of what makes each person unique is gone, leading to reduced 
self-similarity and thus reduced identifiability, which is restored upon 
regaining consciousness.

Our results go beyond confirming that anaesthesia induces FC 
changes within individuals and reveal that anaesthesia changes the 
relationships between different brains. Specifically, the anaesthetized 
brain becomes not only less similar to its awake self, but also less simi-
lar to its anaesthetized self, and overall less identifiable from others’ 
brains. In contrast, Deng et al.66 found that when dividing participants 
based on their high or low susceptibility to propofol sedation (in terms 
of reaction time), FC differences between the two groups were ampli-
fied during sedation compared with at baseline. However, their results 
are not in contrast with our own—not only because Deng et al.66 used a 
different analytic approach (comparing two groups versus brain fin-
gerprinting of individuals), but also, crucially, because all but three of 
their participants were still conscious (level 3 of the Ramsay sedation 
scale), as clearly demonstrated by their ability to perform a behavioural 
task66. In contrast, participants in our datasets reached levels 5 (for 
propofol) and 6 (for sevoflurane) of the Ramsay sedation scale (that is, 
the deepest levels, corresponding to full loss of behavioural respon-
siveness and presumably loss of consciousness70), with the sevoflurane 
anaesthesia achieving surgical depth6. Thus, it is entirely possible that 
sedation (during which individuals are sleepy but still conscious and 
responsive) could preserve or even amplify individual differences in FC 
associated with individual differences in behavioural responsiveness, 
which are then abolished upon full loss of consciousness, whereupon 
behavioural differences are also abolished.

The same caveat about sedation versus fully fledged deep anaes-
thesia applies to a previous study of brain fingerprinting, which 
reported that individuals were still identifiable while under dexme-
detomidine sedation (although a reduction in the difference between 
individuals’ whole-brain FC patterns was also observed)14. Unlike propo-
fol and sevoflurane (the two anaesthetic agents employed in the pre-
sent study), dexmedetomidine induces a state that is physiologically 
analogous to non-rapid eye movement stage 3 sleep71, preserving the 
individual’s capacity for rapidly recovering oriented responsiveness 
to external stimulation72. The different effects of dexmedetomidine 
versus sevoflurane and propofol on behaviour, physiology and brain 
FC may be attributed to differences in their respective molecular 
mechanisms of action72: dexmedetomidine is an alpha-2 adrenergic 
agonist, whereas propofol and sevoflurane act primarily on GABA-A 
receptors73,74. It is an asset of the present study that we were able to 
replicate our results in two separate datasets with different anaesthet-
ics, demonstrating that our findings are not drug specific.

In addition to these molecular differences between anaesthetics, 
participants in the study of Liu and colleagues14 were at Ramsay level 
3–4 and still conscious, as indicated by the fact that they were still able 
to respond to commands. Therefore, our results (which were replicated 
in two independent datasets using different anaesthetics) are not in 
contrast with those of ref. 14; rather, the two studies together suggest 
that functional brain fingerprints are relatively robust to changes in 
brain state and only exhibit significant disruption at high doses that 
also disrupt responsiveness and presumably consciousness.

Intriguingly, transmodal association cortices are not only the 
most heterogeneous between individuals, but also between species, 
exhibiting the greatest evolutionary expansion and the greatest expres-
sion of brain-related human-accelerated genes34,37,38,75. We found that 
regional contributions to the anaesthetic-induced loss of identifiability 
are spatially correlated with both evolutionary cortical expansion 
and regional mean expression of human-accelerated genes. Further-
more, we found that as anaesthesia deepens, it shifts the position of 
the human functional connectome closer to the macaque functional 
connectome in a joint low-dimensional space, returning close to the 
initial position upon recovery.

More broadly, the present results of diminished deviation between 
humans and macaques under deep anaesthesia are in line with previ-
ous work showing diminished deviation between structure and func-
tion under anaesthesia. Previous work had shown that across species, 
the anaesthetized brain’s patterns of time-varying FC become more 
similar to its underlying structural connectivity76–78 (but see ref. 79 
for a report of locally decreased structure–function coupling under 
propofol anaesthesia). This phenomenon reflects diminished ability 
of the unconscious brain to engage in unusual patterns of connectivity 
that go beyond the dictates of anatomy. Intriguingly, psychedelics such 
as LSD and psilocybin (which induce hallucinations and highly bizarre 
subjective experiences) were recently found to have the opposite effect 
on structure–function coupling, making brain activity and connectiv-
ity less constrained by the underlying structural connectome80–82. 
Consistent with anaesthesia and psychedelics having opposite effects 
of structure–function relationships, a recent report suggested that 
psilocybin increases the idiosyncrasy of FC, resulting in greater dif-
ferential identifiability47, which is the opposite of what we found here 
with different anaesthetics. Of note, decreased idiosyncrasy of FC was 
instead recently reported with another psychedelic, ayahuasca55, in 
ritualistic users of psychedelics (members of the Santo Daime religious 
community). This result suggests that psychedelics may be able to 
modulate FC idiosyncrasy in both directions, increasing distinctiveness 
among strangers but increasing similarity among individuals for whom 
the psychedelic experience is part of a shared, ritualized cultural expe-
rience, which is likely to induce a commonality of mental state among 
individuals. Indeed, Colenbier et al.48 and Finn et al.11 showed that brain 
identifiability can be modulated by different cognitive tasks. Therefore, 
although our main result is that brain identifiability is reduced upon 
anaesthetic-induced loss of consciousness, anaesthesia is clearly not 
the only way to reduce the distinctiveness of the functional connec-
tome, and as the study of Liu et al.14 shows, identifiability is relatively 
robust to anaesthetic exposure, only becoming reduced at high doses 
that are likely to suppress consciousness itself.

The present results suggest that the anaesthetized human brain 
is more similar to the brains of other primates, with specifically 
human-expanded regions being the most affected by anaesthesia. 
Future research may investigate whether psychedelics have the oppo-
site effect on the human brain, resulting in an even greater difference 
between humans and macaques, especially since the primary molecular 
target of classic psychedelics—the 5HT-2A receptor—is particularly 
prevalent in evolutionarily expanded transmodal cortices83,84.

This study has a number of limitations that should be borne in 
mind. First, we followed the common practice in the literature of using 
loss of behavioural responsiveness as a marker of loss of consciousness, 
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even though the two are conceptually distinct85. Although both sevo-
flurane and propofol have occasionally been reported to induce 
dreaming86,87, such occurrences are rare and so it seems likely that 
most of our participants were truly unconscious, especially given the 
depth of anaesthesia employed, which in the sevoflurane dataset went 
so deep as to induce burst suppression. Nevertheless, future work may 
fruitfully expand on the present results by using additional methods 
to assess unconsciousness beyond loss of behavioural responsiveness, 
such as slow-wave activity saturation of the EEG88 or the perturbational 
complexity index based on the combination of EEG and transcranial 
magnetic stimulation89.

From the EEG literature, it is also well established that anaesthesia 
induces so-called anteriorization of the distribution of EEG alpha oscil-
lations (8–12 Hz), with the peak of alpha power shifting from occipital 
to frontal electrodes90–92. Although we found that anaesthesia reduces 
the overall identifiability of the fMRI connectome, it may still seem 
counterintuitive that individuals’ fMRI FC patterns become less similar 
to each other under anaesthesia, since the EEG topography is expected 
to undergo similar reconfigurations across individuals. However, it is 
essential to realize that it is not inconsistent for two objects A and B to 
each become more similar to a third object C while at the same time 
becoming less similar to each other (Supplementary Code 1; see also 
Supplementary Fig. 28 for illustrations of this phenomenon in 1D and 
2D). Additionally, fMRI and EEG reflect different neurobiological pro-
cesses and operate at different spatial and temporal scales. Magnetoen-
cephalography and EEG co-fluctuation patterns of different frequency 
bands can look very different from each other and from fMRI, and carry 
different information for fingerprinting93–95. In particular, the phenom-
enon of EEG alpha anteriorization occurs at a timescale that is several 
orders of magnitude removed from the fMRI BOLD signal fluctuations 
studied here (8–12 Hz versus 0.008–0.090 Hz). Last, anteriorization 
pertains to the behaviour of regions, whereas fingerprinting is predi-
cated on the interactions between different regions. In Supplementary 
Code 2, we provide an example of two systems that each undergo the 
same change in the spatial pattern of amplitude of activity of each 
element while simultaneously decreasing their correlation at the level 
of edges. Altogether, any of these factors could explain the coexist-
ence of our fMRI results on reduced inter-individual and inter-species 
distinctiveness, with the phenomenon of anaesthetic-induced EEG 
anteriorization. Teasing these factors apart with dedicated studies 
that explicitly investigate magnetoencephalography and EEG brain 
fingerprinting under anaesthesia represents a promising avenue for 
future work.

Another clear limitation of the present study is the small sample 
size, due to the technical and ethical challenges of performing anaes-
thesia in the scanner. Indeed, we acknowledge that there is a need in 
the field for larger sample sizes. However, we replicated our results 
in a separate dataset, demonstrating generalizability across datasets 
and drugs. We also ensured the robustness of our results to the choice 
of parcellation (anatomical or functional) and to potential confounds 
such as head motion. Moreover, and encouragingly, identifiability and 
self–self similarity were higher between baseline wakefulness and 
recovery, even though they were the two scans most far apart in time, 
and everything else being equal, greater intervening time between 
scans would be expected to diminish identifiability. Additionally, the 
sevoflurane dataset entirely comprised male participants and the 
majority of participants in the propofol dataset were also male. We look  
forward to future replications in sex-balanced datasets as the field 
expands. We also acknowledge that the mapping of functional activa-
tion to psychological terms in Neurosynth does not distinguish activa-
tions from deactivations15. However, we believe that our replication 
with meta-analytic maps defined using BrainMap50 provides reassur-
ance about the validity of our approach. Nonetheless, we note that the 
effects of cognitive matching from Neurosynth, which were clearly 
dependent on the depth of anaesthesia (Fig. 3), were only observed for 

the sevoflurane dataset, which reached deeper levels of anaesthesia. It 
will therefore be of particular interest to determine whether this result 
can be replicated in other datasets. In particular, this approach may 
prove valuable in datasets of patients with disorders of consciousness, 
where decoding brain responsiveness to task commands (for example, 
‘imagine playing tennis’) has already enabled the identification of 
covert consciousness in behaviourally unresponsive patients23–28,30,31. 
However, this paradigm requires patients’ ability to understand com-
mands, keep them in working memory and perform them—a non-trivial 
requirement for individuals who have suffered severe brain damage. 
To reduce this burden, researchers have also begun using spontane-
ous brain response to engaging narratives (for example, clips from 
the movie Taken)96. However, this approach still requires language 
comprehension and working memory to follow the events. Decoding 
based on the match between meta-analytic maps and spontaneous 
brain activity without stimuli may further advance this line of research.

Altogether, the present results indicate that regardless of the 
specific anaesthetic used, anaesthetized human brains are less indi-
vidually distinctive, both across individuals and even across species, 
with regions that are most heterogeneous across individuals and across 
species being especially affected.

Methods
Datasets
Human sevoflurane data. The sevoflurane data included here have 
been published before6,33,97 and we refer the reader to the original pub-
lication for details6. The ethics committee of the medical school of the 
Technische Universitat Munchen (Munchen, Germany) approved the 
current study, which was conducted in accordance with the Declara-
tion of Helsinki. Written informed consent was obtained from volun-
teers at least 48 h before the study session. Twenty healthy adult men 
(20–36 years of age; mean = 26 years) were recruited through campus 
notices and personal contact and compensated for their participation 
in the study. Before inclusion in the study, detailed information was pro-
vided about the protocol and risks and medical histories were reviewed 
to assess any previous neurologic or psychiatric disorder. A focused 
physical examination was performed and a resting electrocardiogram 
was recorded. Further exclusion criteria were the following: physical 
status other than American Society of Anesthesiologists physical status 
I, chronic intake of medication or drugs, hardness of hearing or deaf-
ness, absence of fluency in German, known or suspected disposition to 
malignant hyperthermia, acute hepatic porphyria, history of halothane 
hepatitis, obesity with a body mass index of >30 kg m−2, gastrointestinal 
disorders with a disposition for gastroesophageal regurgitation, a 
known or suspected difficult airway and the presence of metal implants. 
Data acquisition took place between June and December 2013.

Sevoflurane concentrations were chosen so that participants 
tolerated artificial ventilation (reached at 2.0 vol%) and that burst 
suppression was reached in all participants (around 4.4 vol%). To make 
group comparisons feasible, an intermediate concentration of 3.0 vol% 
was also used. In the MRI scanner, participants were in a resting state 
with their eyes closed for 700 s. Since EEG data were simultaneously 
acquired during MRI scanning6 (although they were not analysed in 
the present study), visual online inspection of the EEG was used to 
verify that participants did not fall asleep during the pre-anaesthesia 
baseline scan. Sevoflurane mixed with oxygen was administered via a 
tight-fitting facemask using an fMRI-compatible anaesthesia machine 
(Fabius Tiro; Dräger). Standard American Society of Anesthesiologists 
monitoring was performed: concentrations of sevoflurane, oxygen 
and carbon dioxide were monitored using a cardiorespiratory monitor 
(DatexaS; General Electric). After administering an end-tidal sevoflu-
rane concentration of 0.4 vol% for 5 min, the sevoflurane concentration 
was increased in a stepwise fashion by 0.2 vol% every 3 min until the 
participant became unconscious, as judged by loss of responsiveness 
to the repeatedly spoken command squeeze my hand two consecutive 
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times. The sevoflurane concentration was then increased to reach 
an end-tidal concentration of approximately 3 vol%. When clinically 
indicated, ventilation was managed by the physician and a laryngeal 
mask suitable for fMRI (I-gel, Intersurgical) was inserted. The fraction 
of inspired oxygen was then set at 0.8 and mechanical ventilation was 
adjusted to maintain end-tidal carbon dioxide at steady concentra-
tions of 33 ± 1.71 mmHg during burst suppression, 34 ± 1.12 mmHg 
during 3 vol% and 33 ± 1.49 mmHg during 2 vol% (throughout this 
article, mean ± s.d.). Norepinephrine was given by continuous infusion 
(0.1 ± 0.01 μg kg−1 min−1) through an intravenous catheter in a vein on 
the dorsum of the hand, to maintain the mean arterial blood pressure 
close to baseline values (baseline: 96 ± 9.36 mmHg; burst suppres-
sion: 88 ± 7.55 mmHg; 3 vol%: 88 ± 8.4 mmHg; 2 vol%: 89 ± 9.37 mmHg; 
follow-up: 98 ± 9.41 mmHg). After insertion of the laryngeal mask 
airway, the sevoflurane concentration was gradually increased until 
the EEG showed burst suppression with suppression periods of at least 
1,000 ms and about 50% suppression of electrical activity (reached 
at 4.34 ± 0.22 vol%), which is characteristic of deep anaesthesia. At 
that point, another 700 s of EEG and fMRI results were recorded. A 
further 700 s of data were acquired at steady end-tidal sevoflurane 
concentrations of 3 and 2 vol%, respectively (corresponding to Ramsay 
scale level 6, the deepest), each after an equilibration time of 15 min. 
In a final step, the end-tidal sevoflurane concentration was reduced 
to twice the concentration at loss of responsiveness. However, most 
of the participants moved or did not tolerate the laryngeal mask any 
more under this condition: therefore, this stage was not included in the 
analysis. Sevoflurane administration was then terminated and the scan-
ner table was slid out of the MRI scanner to monitor post-anaesthetic 
recovery. The participants were manually ventilated until spontaneous 
ventilation returned. The laryngeal mask was removed as soon as the 
patient opened his mouth on command. The physician regularly asked 
the participant to squeeze their hand: recovery of responsiveness was 
noted to occur as soon as the command was followed. Fifteen minutes 
after the time of recovery of responsiveness, the Brice interview was 
administered to assess for awareness during sevoflurane exposure; the 
interview was repeated on the phone the next day. After a total of 45 min 
of recovery time, another resting state combined fMRI–EEG scan was 
acquired (with eyes closed, as for the baseline scan). When participants 
were alert, oriented, cooperative and physiologically stable, they were 
taken home by a family member or a friend appointed in advance.

Although the original study acquired both fMRI and EEG data, in 
the present work we only considered the fMRI data. Data acquisition was 
carried out on a 3-Tesla magnetic resonance imaging scanner (Philips 
Achieva Quasar Dual 3.0T 16CH) with an eight-channel, phased-array 
head coil. The data were collected using a gradient-echo-planar imag-
ing sequence (echo time = 30 ms, repetition time (TR) = 1.838 s; flip 
angle = 75°; field of view = 220 × 220 mm2; matrix = 72 × 72; 32 slices; 
slice thickness = 3 mm; inter-slice gap = 1 mm; acquisition time = 700 s; 
functional volumes = 350). The anatomical scan was acquired before 
the functional scan using a T1-weighted magnetization-prepared 
rapid gradient-echo (MPRAGE) sequence with 240 × 240 × 170 voxels 
(1 × 1 × 1 mm voxel size) covering the whole brain. A total of 16 volun-
teers completed the full protocol; one participant was excluded due 
to high motion, leaving n = 15 for analysis.

Human propofol data. The propofol data were collected between May 
and November 2014 at the Robarts Research Institute, Western Uni-
versity, London, Ontario (Canada) and have been published before8,9. 
The study received ethical approval from the Health Sciences Research 
Ethics Board and Psychology Research Ethics Board of Western Uni-
versity (Ontario, Canada). Healthy volunteers (n = 19) were recruited 
(18–40 years of age; 13 males). Volunteers were right handed, native 
English speakers and had no history of neurological disorders. In 
accordance with relevant ethical guidelines, each volunteer provided 
written informed consent and received monetary compensation for 

their time. Due to equipment malfunction or physiological impedi-
ments to anaesthesia in the scanner, data from n = 3 participants (one 
male) were excluded from analyses, leaving a total n = 16 for analysis.

Resting state fMRI data were acquired at different propofol levels: 
no sedation (awake), deep anaesthesia (corresponding to a Ramsay 
score of 5) and also during post-anaesthetic recovery. As previously 
reported9, for each condition, fMRI acquisition began after two anaes-
thesiologists and one anaesthesia nurse independently assessed the 
Ramsay level in the scanning room. The anaesthesiologists and anaes-
thesia nurse could not be blinded to the experimental conditions, 
since part of their role involved determining the participants’ level of 
anaesthesia. Note that the Ramsay score is designed for critical care 
patients; therefore, participants did not receive a score during the 
awake condition before propofol administration. Rather, they were 
required to be fully awake, alert and communicating appropriately. 
To provide a further, independent evaluation of participants’ level of 
responsiveness, they were asked to perform two tasks: a test of verbal 
memory recall and a computer-based auditory target detection task. 
Wakefulness was also monitored using an infrared camera placed inside 
the scanner. Propofol was administered intravenously using an AS50 
auto syringe infusion pump (Baxter Healthcare). An effect site/plasma 
steering algorithm combined with the computer-controlled infusion 
pump was used to achieve stepwise sedation increments, followed by 
manual adjustments as required to reach the desired target concentra-
tions of propofol according to the TIVA Trainer (European Society for 
Intravenous Anaesthesia) pharmacokinetic simulation program. This 
software also specified the blood concentrations of propofol, follow-
ing the Marsh three-compartment model, which were used as targets 
for the pharmacokinetic model providing target-controlled infusion. 
After an initial propofol target effect site concentration of 0.6 μg ml−1, 
the concentration was gradually increased by increments of 0.3 μg ml−1 
and the Ramsay score was assessed after each increment. A further 
increment occurred if the Ramsay score was <5. The mean estimated 
effect site and plasma propofol concentrations were kept stable by the 
pharmacokinetic model delivered via the TIVA Trainer infusion pump.  
A Ramsay level of 5 was achieved when participants stopped responding 
to verbal commands, were unable to engage in conversation and were 
rousable only to physical stimulation. Once both anaesthesiologists 
and the anaesthesia nurse all agreed that Ramsay sedation level 5 had 
been reached and participants stopped responding to both tasks, data 
acquisition was initiated. The mean estimated effect site propofol 
concentration was 2.48 (1.82–3.14) μg ml−1 and the mean estimated 
plasma propofol concentration was 2.68 (1.92–3.44) μg ml−1. The mean 
total mass of propofol administered was 486.58 (373.30–599.86) mg. 
These values of variability are typical for the pharmacokinetics and 
pharmacodynamics of propofol. Oxygen was titrated to maintain 
SpO2 above 96%. At Ramsay 5 level, participants remained capable of 
spontaneous cardiovascular function and ventilation. However, the 
sedation procedure did not take place in a hospital setting; therefore, 
intubation during scanning could not be used to ensure airway secu-
rity during scanning. Consequently, although two anaesthesiologists 
closely monitored each participant, the scanner time was minimized 
to ensure return to normal breathing following deep sedation. No 
state changes or movement were noted during the deep sedation 
scanning for any of the participants included in the study. Propofol was 
discontinued following the deep anaesthesia scan, and participants 
reached level 2 of the Ramsay scale approximately 11 min afterwards, as 
indicated by clear and rapid responses to verbal commands. This cor-
responds to the recovery period. As previously reported9, once in the 
scanner, participants were instructed to relax with closed eyes, without 
falling asleep. Resting state fMRI results in the absence of any tasks 
were acquired for 8 min for each participant. A further scan was also 
acquired during auditory presentation of a plot-driven story through 
headphones (5 min long). Participants were instructed to listen while 
keeping their eyes closed. The present analysis focuses on the resting 
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state data only; the story scan data have been published separately8 
and will not be discussed further here.

As previously reported9, MRI scanning was performed using a 
3-Tesla Siemens Tim Trio scanner (32-channel coil), and 256 functional 
volumes (echo-planar images (EPI)) were collected from each partici-
pant, with the following parameters: slices = 33; inter-slice gap = 25%; 
resolution = 3 mm isotropic; TR = 2,000 ms; echo time (TE) = 30 ms; 
flip angle = 75 degrees; matrix size = 64 × 64. The order of acquisition 
was interleaved, bottom-up. Anatomical scanning was also performed, 
acquiring a high-resolution T1-weighted volume (32-channel coil; 
1 mm isotropic voxel size) with a 3D MPRAGE sequence, using the fol-
lowing parameters: acquisition time (TA) = 5 min, TE = 4.25 ms; matrix 
size = 240 × 256; flip angle = 9° (ref. 9).

Functional MRI pre-processing and denoising. We applied a standard 
pre-processing pipeline in accordance with our previous publications 
with anaesthesia data9,33. Pre-processing was performed using the 
CONN toolbox, version 17f (CONN; http://www.nitrc.org/projects/
conn)98, implemented in MATLAB 2016a. The pipeline involved the 
following steps: removal of the first 10 s to achieve steady-state mag-
netization; motion correction; slice timing correction; identification 
of outlier volumes for subsequent scrubbing by means of the quality 
assurance/artefact rejection software ART (http://www.nitrc.org/
projects/artifact_detect); and normalization to Montreal Neurological 
Institute (MNI-152) standard space (2 mm isotropic resampling resolu-
tion), using the segmented grey matter image from each participant’s 
T1-weighted anatomical image, together with an a priori grey matter 
template.

Denoising was also performed using the CONN toolbox, using the 
same approach as in our previous publications with pharmaco-MRI 
datasets9,33. Pharmacological agents can induce alterations in physi-
ological parameters (heart rate, breathing rate and motion) or neuro-
vascular coupling. The anatomical component-based noise correction 
(aCompCor) method removes physiological fluctuations by extract-
ing principal components from regions unlikely to be modulated 
by neural activity; these components are then included as nuisance 
regressors99. Following this approach, five principal components were 
extracted from white matter and cerebrospinal fluid signals (using 
individual tissue masks obtained from the T1-weighted structural MRI 
images)98 and regressed out from the functional data together with six 
individual-specific realignment parameters (three translations and 
three rotations), as well as their first-order temporal derivatives. This 
was followed by scrubbing of outliers identified by ART using ordinary 
least squares regression98. Finally, the denoised BOLD signal time 
series were linearly detrended and bandpass filtered to eliminate both 
low-frequency drift effects and high-frequency noise, thus retaining 
frequencies between 0.008 and 0.090 Hz. The step of global signal 
regression has received substantial attention in the literature as a 
denoising method100–102. However, recent work has demonstrated that 
the global signal contains behaviourally relevant information103 and, 
crucially, information about states of consciousness across pharmaco-
logical and pathological perturbations104. Therefore, in line with ours 
and others’ previous studies, here we avoided global signal regression 
in favour of the aCompCor denoising procedure, which is among those 
recommended.

Finally, denoised BOLD signals were parcellated into 200 corti-
cal regions of interest (ROIs) from the Schaefer atlas52. We also repli-
cated our results with the 68-ROI anatomical Desikan–Killiany cortical 
parcellation56, as well as with a combined cortical–subcortical atlas 
comprising 200 cortical ROIs from the Schaefer atlas and an additional 
32 subcortical ROIs from the subcortical atlas of Tian and colleagues105, 
as previously recommended106. For comparison with the macaque 
data, a human-adapted version of the 82-ROI cortical parcellation of 
Kötter and Wanke was used45, as adapted by ref. 46 (see Supplementary 
Fig. 8). FC was estimated for each individual and each condition as the 

Pearson correlation between pairs of denoised and parcellated BOLD 
time series.

Awake macaque fMRI data from PRIME-DE. The first dataset of 
non-human primate MRI data was made available as part of the Primate 
neuroimaging Data-Exchange (PRIME-DE) monkey MRI data-sharing 
initiative—a recently introduced open resource for non-human primate 
imaging41.

The data pre-processing and denoising followed the same pro-
cedures as in a previous publication42. We used fMRI data from rhesus 
macaques (Macaca mulatta) scanned at Newcastle University. This 
sample included 14 exemplars (12 male and two female) with an age 
distribution of 3.90–13.14 years and a weight distribution of 7.2–18.0 kg 
(full sample descriptions are available online at http://fcon_1000.pro-
jects.nitrc.org/indi/PRIME/files/newcastle.csv and http://fcon_1000.
projects.nitrc.org/indi/PRIME/newcastle.html).

Ethics approval. All of the animal procedures performed were approved 
by the UK Home Office and complied with the Animal Scientific Proce-
dures Act (1986) on the care and use of animals in research, as well as 
the European Directive on the protection of animals used in research 
(2010/63/EU). We support the Animal Research: Reporting of In Vivo 
Experiments principles on reporting animal research. All persons 
involved in this project were Home Office certified and the work was 
strictly regulated by the UK Home Office. Local Animal Welfare Review 
Body approval was obtained. Compliance and assessment to ensure 
that the 3Rs principles were met was conducted by the National Cen-
tre for the Replacement, Refinement and Reduction of Animals in 
Research. Animals in Science Committee (UK) approval was obtained 
as part of Home Office project license approval.

Animal care and housing. All animals were housed and cared for in a 
group-housed colony and animals performed behavioural training on 
various tasks for auditory and visual neuroscience. No training took 
place before MRI scanning.

Macaque MRI acquisition. Animals were scanned in a vertical Bruker 
4.7T primate dedicated scanner, with single-channel or four- to 
eight-channel parallel imaging coils used. No contrast agent was 
used. Optimization of the magnetic field before data acquisition 
was performed by means of second-order shim with Bruker and 
custom scanning sequence optimization. Animals were scanned 
upright, with MRI-compatible head post or non-invasive head 
immobilization, and working on tasks or at rest (here, only resting 
state scans were included). Eye tracking, video and audio monitor-
ing were employed during scanning. Resting state scanning was 
performed for 21.6 min (TR = 2,600 ms; TE = 17 ms; effective echo 
spacing = 0.63 ms; voxels size = 1.22 × 1.22 × 1.24; phase encoding 
direction = encoded in columns). Structural scans comprised a T1 
structural, MDEFT sequence with the following parameters: TE = 6 ms; 
TR: = 750 ms; inversion delay = 700 ms; number of slices = 22; in-plane 
field of view = 12.8 × 9.6 cm2; voxels per grid = 256 × 192; voxel resolu-
tion = 0.5 × 0.5 × 2.0 mm3; number of segments = 8.

The macaque MRI data were pre-processed using the recently 
developed pipeline for non-human primate MRI analysis, Pypreclin, 
which addresses several specificities of monkey research. The pipe-
line is described in detail in the associated publication107. Briefly, it 
includes the following steps: (1) slice timing correction; (2) correction 
for the motion-induced, time-dependent B0 inhomogeneities; (3) 
reorientation from acquisition position to template (here we used 
the recently developed National Institute of Mental Health Macaque 
Template—a high-resolution template of the average macaque brain 
generated from in vivo MRI of 31 rhesus macaques (M. mulatta)108); 
(4) realignment to the middle volume using FSL MCFLIRT function; 
(5) normalization and masking using Joe’s Image Program ( JIP-align) 
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routine (http://www.nmr.mgh.harvard.edu/~jbm/jip/; J. Mandeville, 
Massachusetts General Hospital, Harvard University), which is specifi-
cally designed for preclinical studies (the normalization step aligns 
(affines) and warps (nonlinear alignment using the distortion field) the 
anatomical data into a generic template space); (6) B1 field correction 
for low-frequency intensity non-uniformities present in the data; and 
(7) coregistration of functional and anatomical images using JIP-align 
to register the mean functional image (the moving image) to the ana-
tomical image (the fixed image) by applying a rigid transformation. 
The anatomical brain mask was obtained by warping the template 
brain mask using the deformation field previously computed during 
the normalization step. Then, the functional images were aligned with 
the template space by composing the normalization and coregistra-
tion spatial transformations.

Denoising. The aCompCor denoising method implemented in the 
CONN toolbox was used to denoise the macaque fMRI data, to ensure 
consistency with the human data analysis pipeline. White matter and 
cerebrospinal fluid masks were obtained from the corresponding 
probabilistic tissue maps of the high-resolution National Institute of 
Mental Health Macaque Template (eroded by 1 voxel); their first five 
principal components were regressed out of the functional data, as well 
as linear trends and six motion parameters (three translations and three 
rotations) and their first derivatives. To make human and macaque data 
comparable, the macaque data were also bandpass filtered in the same 
0.008–0.090 Hz range that was used for the human data.

Out of the 14 total animals present in the Newcastle sample, ten 
had available awake resting state fMRI data; of these ten, all except the 
first animal had two scanning sessions available. Thus, the total was 19 
distinct sessions across ten individual macaques.

Anaesthetized macaque fMRI data from The Virtual Brain. The Vir-
tual Brain project provides a dataset of pre-processed macaque fMRI 
results comprising n = 9 adult male rhesus macaques (eight M. mulatta 
and one Macaca fascicularis; aged between 4 and 8 years) acquired 
under light isoflurane anaesthesia43. This is the same dataset as was 
used in a previous publication by some of the authors44; for consist-
ency of reporting, we use the same wording. A full description of data 
acquisition and processing is provided in ref. 43. All surgical and experi-
mental procedures were approved by the Animal Use Subcommittee 
of the University of Western Ontario Council on Animal Care and were 
in accordance with the Canadian Council on Animal Care guidelines, 
as previously reported43.

Briefly, animals were lightly anaesthetized before their scanning 
session and anaesthesia was maintained using 1.0–1.5% isoflurane. The 
scanning was performed on a 7T Siemens MAGNETOM head scanner 
with the following parameters: structural MRI: sequence = 3D MPRAGE 
T1 weighted; slices = 128; voxel size = 0.5 mm isotropic; one session of 
10 min (600 volumes) resting state fMRI: sequence = 2D multi-band EPI; 
TR = 1,000 ms; slices = 42; voxel size = 1.0 × 1.0 × 1.1 mm3. As reported in 
the original publication43, FSL’s FEAT toolbox was used for pre-processing 
the fMRI data, which included motion correction, high-pass filtering, 
registration, normalization and spatial smoothing (full width at half 
maximum = 2 mm). Motion in the fMRI data was minimal, with an aver-
age framewise displacement across all animals and all scans of 0.015 mm 
(range = 0.011–0.019 mm). Global white matter and cerebrospinal fluid 
signals were linearly regressed using the ‘Analysis of Functional NeuroIm-
ages’ 3dDeconvolve function. The global mean signal was not regressed. 
The regional fMRI signal was then extracted for each ROI in the regional 
map parcellation for each resting state fMRI scan.

Human structural connectome from the Human Connectome Pro-
ject. We used diffusion MRI data from the 100 unrelated participants 
(54 females and 46 males; mean age = 29.1 ± 3.7 years) of the Human 
Connectome Project (HCP) 900 participants data release109. All HCP 

scanning protocols were approved by the local Institutional Review 
Board at Washington University in St. Louis. The diffusion-weighted 
imaging (DWI) acquisition protocol is covered in detail elsewhere110. 
The diffusion MRI scan was conducted on a Siemens 3T Skyra scan-
ner using a 2D spin-echo single-shot multi-band EPI sequence with 
a multi-band factor of 3 and monopolar gradient pulse. The spatial 
resolution was 1.25 mm isotropic (TR = 5,500 ms; TE = 89.50 ms). The 
b values were 1,000, 2,000 and 3,000 s mm−2. The total number of 
diffusion sampling directions was 90, 90 and 90 for each of the shells 
in addition to six B0 images. We used the version of the data made avail-
able in DSI Studio-compatible format at http://brain.labsolver.org/
diffusion-mri-templates/hcp-842-hcp-1021 (ref. 111).

We adopted previously reported procedures to reconstruct the 
human connectome from DWI data. The minimally pre-processed 
DWI HCP data110 were corrected for eddy current and susceptibility 
artefact. DWI data were then reconstructed using q-space diffeomor-
phic reconstruction (QSDR112), as implemented in DSI Studio (https://
dsi-studio.labsolver.org/). QSDR calculates the orientational distribu-
tion of the density of diffusing water in a standard space, to conserve 
the diffusible spins and preserve the continuity of fibre geometry for 
fibre tracking. QSDR first reconstructs DWI images in native space 
and computes the quantitative anisotropy in each voxel. These quan-
titative anisotropy values are used to warp the brain to a template 
quantitative anisotropy volume in Montreal Neurological Institute 
space using a nonlinear registration algorithm implemented in the 
statistical parametric mapping software. A diffusion sampling length 
ratio of 2.5 was used and the output resolution was 1 mm. A modi-
fied FACT algorithm113 was then used to perform deterministic fibre 
tracking on the reconstructed data, with the following parameters106: 
angular cutoff = 55°; step size = 1.0 mm; minimum length = 10 mm; 
maximum length = 400 mm; spin density function smoothing = 0; 
and a quantitative anisotropy threshold determined by DWI signal in 
the cerebrospinal fluid. Each of the streamlines generated was auto-
matically screened for its termination location. A white matter mask 
was created by applying DSI Studio’s default anisotropy threshold 
(0.6 Otsu’s threshold) to the spin distribution function’s anisotropy 
values. The mask was used to eliminate streamlines with premature 
termination in the white matter region. Deterministic fibre tracking 
was performed until 1,000,000 streamlines were reconstructed for 
each individual.

For each individual, their structural connectome was recon-
structed by drawing an edge between each pair of regions i and j from 
the Schaefer cortical atlas52 if there were white matter tracts connecting 
the corresponding brain regions end to end. Edge weights were quan-
tified as the number of streamlines connecting each pair of regions, 
normalized by ROI distance and size.

A group consensus matrix A across participants was then obtained 
using the distance-dependent procedure of Betzel and colleagues114 
to mitigate concerns about inconsistencies in the reconstruction of 
individual participants’ structural connectomes. This approach seeks 
to preserve both the edge density and the prevalence and length dis-
tribution of inter- and intrahemispheric edge length distribution of 
individual participants’ connectomes and is designed to produce a 
representative connectome114,115. This procedure produces a binary 
consensus network indicating which edges to preserve. The final edge 
density was 27%. The weight of each non-zero edge was then computed 
as the mean of the corresponding non-zero edges across participants.

Canonical brain maps. To contextualize our regional pattern of 
anaesthetic-induced changes in identifiability, we obtained relevant 
brain maps from the literature using neuromaps (https://netneurolab.
github.io/neuromaps/). We fetched and parcellated the map of the 
sensory–association archetypal axis from ref. 34, the map of cortical 
expansion between macaques and humans from ref. 37 and the map 
of inter-individual variability of FC from ref. 35.
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Human-accelerated genes are genes associated with so-called 
human-accelerated regions of the human genome, identified as a set 
of loci that displayed accelerated divergence in the human lineage 
by comparing the human genome with that of the chimpanzee (Pan 
troglodytes), one of our closest living evolutionary relatives116,117. Among 
these human-accelerated genes, HAR–brain genes pertain to brain 
function and development38. The map of mean regional expression of 
HAR–brain gene expression was obtained as follows. First, the list of 415 
HAR–brain genes was obtained from ref. 38 (see the original publica-
tion for details of how these genes were selected). Then, regional gene 
expression for each of the 200 cortical regions of the Schaefer atlas 
was obtained using the abagen toolbox (https://abagen.readthedocs.
io/)118, following abagen’s default processing workflow and mirroring 
data between homologous cortical regions to ensure adequate cover-
age of both the left (data from six donors) and right hemisphere (data 
from two donors). Distances between samples were evaluated on the 
cortical surface with a 2-mm distance threshold. Gene expression 
data were normalized across the cortex using outlier-robust sigmoid 
normalization. Of the resulting 15,633 genes, 392 were among the list 
of HAR–brain genes from Wei and colleagues38. Finally, the map of 
regional mean expression of HAR–brain genes was obtained as the 
regional mean normalized gene expression across the 392 genes.

Signal-to-noise ratio map of human fMRI. To quantify the regional 
signal-to-noise ratio of the fMRI signal in the human brain, we used 
the map originally made by ref. 36. Briefly, Shafiei et al.36 computed 
the signal-to-noise ratio as the ratio of the regional BOLD time series’ 
mean to its standard deviation for each region of n = 201 subjects of 
the HCP, and subsequently averaged across individuals to obtain a 
group-representative signal-to-noise ratio map of the human brain. 
For further details, we refer the reader to ref. 36.

Brain fingerprinting
Brain fingerprinting refers to using brain-derived metrics (here the 
FC obtained from resting state fMRI) to discriminate individuals from 
each other, analogously to how the grooves on one’s fingertips may be 
used to discern one’s identity. This requires brain fingerprints ( just like 
conventional fingerprints) to be different across different people (to 
avoid confusing distinct individuals) but consistent within the same 
individual (to track identity).

Let A be the identifiability matrix (that is, the square, 
non-symmetric matrix of similarity between individuals’ test and retest 
scans), such that the size of A is S-by-S (with S being the number of 
individuals in the dataset). Each entry of A is obtained as the correla-
tion between the corresponding individuals’ vectorized matrices of 
parcellated FC. Let Iself = 〈Aii〉 represent the average of the main diagonal 
elements of A, which comprise the Pearson correlation values between 
scans of same individual. From now on, we refer to this quantity as 
self-identifiability or Iself. Similarly, let Iothers = 〈Aij〉 define the average of 
the off-diagonal elements of matrix A (that is, the correlation between 
scans of different individuals i and j). Then, we define the differential 
identifiability (Idiff) of the sample as the difference between both terms: 
Idiff = (Iself − Iothers), which quantifies the difference between the average 
within-participant FCs similarity and the average between-participants 
FCs similarity. The higher the value of Idiff, the higher the individual 
fingerprint overall along the population10.

We can also quantify the edgewise identifiability of individuals by 
using the ICC10. The ICC is a widely used measure in statistics, most com-
monly to assess the percentage of agreement between units (or ratings 
or scores) of different groups (or raters or judges)119–121. It describes how 
strongly units in the same group resemble each other. The stronger 
the agreement between the ratings, the higher its ICC value (as for 
Pearson’s correlation, the ICC ranges between −1 and +1). We use ICC to 
quantify the extent to which the connectivity value of an edge (the FC 
value between two brain regions) could separate within and between 

participants. In other words, the higher the ICC, the higher the identi-
fiability of the connectivity edge10. We implemented the ICC analysis 
using code available at https://github.com/eamico/MEG_fingerprints, 
as described in ref. 10. In practice, the ICC is estimated using the differ-
ence between sample mean squares: ICC = (MSB − MSW)/(MSB + (k − 1)
MSW), where MSB is the variability of the group means from the grand 
mean, MSW is the variability of the individual scores from their respec-
tive group means and k is the sample size. The rationale is that if group 
membership has no relevance, the variability within groups should be 
the same as the variability between groups (that is, MSB = MSW and the 
ICC equals 0). However, if there is more variability within groups than 
between groups, a negative ICC will be observed. In our main analysis, 
we included all ICC values. However, we also replicated our results 
using only ICC values whose confidence interval did not include zero.

Meta-analytic cognitive matching from Neurosynth
Continuous measures of the association between voxels and cognitive 
categories were obtained from Neurosynth—an automated term-based 
meta-analytic tool that synthesizes results from more than 14,000 
published fMRI studies by searching for high-frequency key words 
(such as ‘pain’ and ‘attention’ terms) that are systematically mentioned 
in the papers alongside fMRI voxel coordinates (https://github.com/
neurosynth/neurosynth)—using the volumetric association test maps15. 
This measure of association strength is the tendency that a given term 
is reported in the functional neuroimaging study if there is activation 
observed at a given voxel. Note that Neurosynth does not distinguish 
between areas that are activated or deactivated in relation to the term 
of interest, nor the degree of activation, only that certain brain areas 
are frequently reported in conjunction with certain words. Although 
more than 1,000 terms are catalogued in the Neurosynth engine, we 
refined our analysis by focusing on cognitive function and therefore 
limited the terms of interest to cognitive and behavioural terms. To 
avoid introducing a selection bias, we opted for selecting terms in a 
data-driven fashion instead of selecting terms manually. Therefore, 
terms were selected from the Cognitive Atlas, a public ontology of 
cognitive science51, which includes a comprehensive list of neurocog-
nitive terms. This approach totalled to t = 123 terms, ranging from 
umbrella terms (attention and emotion) to specific cognitive processes 
(visual attention and episodic memory), behaviours (eating and sleep) 
and emotional states (fear and anxiety) (note that the 123 term-based 
meta-analytic maps from Neurosynth do not explicitly exclude patient 
studies). The Cognitive Atlas subdivision has previously been used in 
conjunction with Neurosynth122–124, so we opted for the same approach 
to make our results comparable to previous reports. The full list of 
terms included in the present analysis is shown in Supplementary 
Table 1. The probabilistic measure reported by Neurosynth can be inter-
preted as a quantitative representation of how regional fluctuations 
in activity are related to psychological processes. As with the resting 
state BOLD data, voxelwise Neurosynth maps were parcellated into 200 
cortical regions according to the Schaefer atlas52 (or 68 for the replica-
tion with the Desikan–Killiany atlas and 232 cortical and subcortical 
regions for replication with the subcortex included). Code to perform 
cognitive matching is available at https://github.com/netneurolab/
luppi-cognitive-matching.

For each individual, their parcellated BOLD signals at each point in 
time were spatially correlated against each Neurosynth map, produc-
ing one value of correlation per Neurosynth map per BOLD volume. 
We refer to this operation as cognitive matching. For each volume, the 
quality of cognitive matching was quantified as the highest value of 
(positive) correlation across all maps. These values were subsequently 
averaged across all volumes to obtain a single value per condition per 
participant. As an alternative, instead of using the highest positive 
correlation, we also considered the mean magnitude of correlation 
(regardless of sign) across all maps, subsequently averaging across 
volumes as described above.

http://www.nature.com/nathumbehav
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We also repeated the cognitive matching separately for Neuro-
synth maps exhibiting a positive spatial correlation with the archetypal 
axis of ref. 34 (see above; that is, those primarily exhibiting positive 
values in the transmodal association cortex) and for maps exhibiting 
a negative correlation with the archetypal axis, which primarily com-
prised activation in unimodal (sensory) cortices.

Alternative meta-analytic matching from BrainMap. Whereas Neuro-
synth is an automated tool, BrainMap is an expert-curated repository. 
It includes the brain coordinates that are significantly activated during 
thousands of different experiments from published neuroimaging 
studies49,50. As a result, Neurosynth terms and BrainMap behavioural 
domains differ considerably. Here we used maps in the Desikan–Kil-
liany anatomical atlas, pertaining to 66 unique behavioural domains 
(the same as in ref. 123) obtained from 8,703 experiments. The full list 
of BrainMap terms included in the present analysis is shown in Sup-
plementary Table 2. Experiments conducted on unhealthy participants 
were excluded, as well as experiments without a defined behavioural 
domain.

Low-dimensional representation with PCA
We used PCA to obtain a low-dimensional representation of the human 
and macaque FC in a common space. PCA re-represents the data in 
terms of linearly uncorrelated (orthogonal) variables called principal 
components, which are extracted from the data themselves as the axes 
of maximum variation125. Therefore, PCA is widely used for dimension-
ality reduction and visualization of high-dimensional data because it 
provides a low-dimensional representation of the data while preserving 
as much of the original variability as possible.

To obtain the joint PCA space, we began by vectorizing the upper 
triangular of each FC matrix for each scan (awake, recovery and differ-
ent levels of anaesthesia) of each individual in the human dataset. We 
also did the same for all available scans in the awake and anaesthetized 
macaque datasets. The vectorized FC patterns were then concatenated, 
forming separate columns of a matrix M whose rows corresponded 
to FC edges. The PCA algorithm was then applied to this matrix M to 
extract linearly orthogonal principal components of maximum variabil-
ity (ranked in descending order of variance explained). The algorithm 
also provided weights that associated each column of M with each of 
the extracted PCs. We used these weights to obtain a low-dimensional 
representation of each column of M (corresponding to FC patterns) as 
a point in the space of principal components. In our main analyses, we 
used the first two principal components to define the low-dimensional 
space, but we also replicated our results using the first three principal 
components.

Statistical analyses
The statistical significance of differences between conditions (here, 
levels of anaesthesia) was determined with permutation t-tests 
(paired sample and two sided) with 10,000 permutations. The use 
of permutation tests alleviated the need to assume normality of 
data distributions (which was not formally tested). All tests were two 
sided, with an α value of 0.05. The effect sizes were estimated using 
Hedge’s measure of the standardized mean difference, g, which was 
interpreted in the same way as Cohen’s d, but more appropriate for 
small sample sizes126. The Measures of Effect Size Toolbox for MATLAB 
(https://github.com/hhentschke/measures-of-effect-size-toolbox) 
was used127. Anaesthesia conditions were compared separately against 
wakefulness and recovery and the false positive rate against multiple 
comparisons was controlled using false discovery rate correction128, 
separately for these two cases. The spatial correlation between brain 
maps was quantified with Spearman’s correlation coefficient and its 
statistical significance was assessed non-parametrically via com-
parison against a null distribution of null maps with preserved spatial 
autocorrelation124,129.

Dominance analysis. To consider all of the regional correlates together 
and evaluate their respective contributions, we performed a domi-
nance analysis with all four canonical brain maps as predictors and 
the regional map of anaesthetic-induced ICC changes as the target. 
Dominance analysis seeks to determine the relative contribution (the 
dominance of each independent variable to the overall fit (adjusted 
R2)) of the multiple linear regression model (https://github.com/
dominance-analysis/dominance-analysis)39. This is done by fitting 
the same regression model on every combination of predictors (2p − 1 
submodels for a model with p predictors). Total dominance is defined 
as the average of the relative increase in R2 when adding a single predic-
tor of interest to a submodel, across all 2p − 1 submodels. The sum of 
the dominance of all input variables is equal to the total adjusted R2 of 
the complete model, making the percentage of relative importance an 
intuitive method that partitions the total effect size across predictors. 
Therefore, unlike other methods of assessing predictor importance, 
such as methods based on regression coefficients or univariate correla-
tions, dominance analysis accounts for predictor–predictor interac-
tions and is interpretable. We established the statistical significance of 
the dominance analysis model using a non-parametric permutation test 
(one sided), by comparing the empirical variance explained against a 
null distribution of R2 obtained from repeating the multiple regression 
with spatial autocorrelation-preserving null maps124,129.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The original pharmacological fMRI data are available from the cor-
responding authors of the original publications referenced herein. 
The Allen Human Brain Atlas transcriptomic database is available at 
https://human.brain-map.org/. Neurosynth is available at https://
neurosynth.org/. The list of human-accelerated brain genes is available 
from the supplementary material of ref. 38. The Newcastle macaque 
fMRI data are available from the PRIME-DE database (http://fcon_1000.
projects.nitrc.org/indi/indiPRIME.html). Macaque fMRI data from 
The Virtual Brain project43 are available at https://openneuro.org/
datasets/ds001875/versions/1.0.3. Diffusion MRI data for the HCP in 
DSI Studio-compatible format are available at http://brain.labsolver.
org/diffusion-mri-templates/hcp-842-hcp-1021. Source data are pro-
vided with this paper.

Code availability
We have made code for cognitive matching freely available at https://
github.com/netneurolab/luppi-cognitive-matching. Code for brain 
fingerprinting is freely available at https://github.com/eamico/
MEG_fingerprints. The code for spin-based permutation testing of 
cortical correlations is freely available at https://github.com/fran-
tisekvasa/rotate_parcellation. DSI Studio is freely available at https://
dsi-studio.labsolver.org/. The CONN toolbox is freely available at 
http://www.nitrc.org/projects/conn. The Pypreclin code is available 
at https://github.com/neurospin/pypreclin. The abagen toolbox is 
available at https://abagen.readthedocs.io/. The neuromaps tool-
box is available at https://netneurolab.github.io/neuromaps/. Code 
for dominance analysis is freely available at https://github.com/
dominance-analysis/dominance-analysis. The Measures of Effect 
Size Toolbox for MATLAB is freely available at https://github.com/
hhentschke/measures-of-effect-size-toolbox. Supplementary Codes 
1 and 2 are provided as Supplementary Information.
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Extended Data Fig. 1 | Replication of identifiability results at different doses of 
sevoflurane. (a) Identifiability matrix between wakefulness and post-anaesthetic 
recovery. (b) Identifiability matrix between wakefulness and vol 2% sevoflurane 
anaesthesia (right). Entries along the diagonal, represent self-self similarity 
(correlation of FC patterns), whereas off-diagonal entries represent self-other 
similarity. (c) Self-self similarity is significantly higher between  
two conscious states, than between wakefulness and vol 2% sevoflurane.  
(d) The difference between self-self correlation and mean self-other correlation 
(differential identifiability) is significantly higher between two conscious states, 
than between wakefulness and vol 2% sevoflurane. (e) The regional distribution 
of contributions to identifiability (change in intra-class correlation coefficient) 
is plotted on the cortical surface. It is significantly spatially correlated with the 
corresponding map obtained with vol 3% sevoflurane: Spearman ρ = 0.61, pspin 

< 0.001, N = 200 regions. (f) Identifiability matrix between wakefulness and 
post-anaesthetic recovery. (g) Identifiability matrix between wakefulness and 
burst-suppression level of sevoflurane anaesthesia. (h) Self-self similarity is 
significantly higher between two conscious states, than between wakefulness 
and burst-suppression level of sevoflurane. (i) The difference between self-self 
correlation and mean self-other correlation (differential identifiability) is 
significantly higher between two conscious states, than between wakefulness 
and burst-suppression level of sevoflurane. (j) The regional distribution of 
contributions to identifiability (change in intra-class correlation coefficient) 
is plotted on the cortical surface. It is significantly spatially correlated with the 
corresponding map obtained with vol 3% sevoflurane: Spearman correlation  
ρ = 0.80, pspin < 0.001, N = 200 regions. N=15 human volunteers. Source data are 
provided as source data files.
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Extended Data Fig. 2 | Distributions of self-self and self-other correlations for different pairs of conditions. (a) Two conscious states: awake versus post-anaesthetic 
recovery. (b) Vol 2% versus vol 3% sevoflurane. (c) Vol 3% versus burst-suppression levels of sevoflurane.
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Extended Data Fig. 3 | Identifiability of individual functional connectomes 
is diminished under propofol anaesthesia. (a) Identifiability matrix between 
wakefulness and post-anaesthetic recovery. The rate of successful identification 
is 100 %. (b) Identifiability matrix between wakefulness and propofol anaesthesia 
(right). Entries along the diagonal, represent self-self similarity (correlation of FC 
patterns), whereas off-diagonal entries represent self-other similarity.  
(c) Self-self similarity is significantly higher between two conscious states, than 

between wakefulness and propofol anaesthesia. (d) The difference between 
self-self correlation and mean self-other correlation (differential identifiability) 
is significantly higher between two conscious states, than between wakefulness 
and propofol anaesthesia. Box-plot: center line indicates the median; bounds 
of the box indicate the 25th and 75th percentiles; whiskers indicate 1.5 × 
interquartile range; extreme values are shown as individual circles. N=16 human 
volunteers. Source data are provided as a source data file.
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Extended Data Fig. 4 | Anatomical characterisation of contributions to 
propofol-induced loss of identifiability. (a) Edge-level difference in intra-class 
correlation coefficient between awake-recovery and awake-propofol. (b) The 
anaesthetic-induced loss of ICC is significantly more pronounced for functional 
connections within transmodal cortex, than those involving unimodal regions 
(two-sided t-test, n=5580 within-transmodal edges and n=34420 unimodal-
transmodal and unimodal-unimodal edges). Box-plot: center line indicates 
the median; bounds of the box indicate the 25th and 75th percentiles; whiskers 
indicate 1.5 × interquartile range; extreme values are shown as individual circles. 
(c) Regional distribution of propofol-induced loss of ICC, projected onto the 
cortical surface. It is significantly spatially correlated with the corresponding 

map obtained with sevoflurane: Spearman ρ = 0.35, pspin < 0.001, N = 200 regions. 
(d) The propofol-induced regional loss of ICC is significantly spatially aligned 
with the archetypal sensory-association axis of cortical organisation; the regional 
distribution of inter-individual variability of functional connectivity; the regional 
distribution of cortical expansion between macaque and human brains; and the 
regional expression of human-accelerated genes pertaining to brain function and 
development ("HAR-brain genes”), as assessed with Spearman correlation across 
N = 200 regions. For each brain map, the range of values spanned by the color-bar 
is displayed on the y-axis of the scatter-plot directly underneath. Source data are 
provided as a source data file.
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Extended Data Fig. 5 | Cognitive matching from brain activity under 
wakefulness and propofol anaesthesia. Ordinate: mean across time of the best 
decoding score (maximum spatial correlation between brain activity and 123 
NeuroSynth meta-analytic maps). Box-plots: center line indicates the median; 

bounds of the box indicate the 25th and 75th percentiles; whiskers indicate 1.5 × 
interquartile range; extreme values are shown as individual circles. N=16 human 
volunteers. See Supplementary Data 1 for full statistical reporting. Source data 
are provided as a source data file.
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Extended Data Fig. 6 | Alternative quantification of cognitive matching from 
brain activity under wakefulness and anaesthesia. (a) Sevoflurane dataset. 
N=15 human volunteers. (b) Propofol dataset. N=16 human volunteers. For both 
(a) and (b): Ordinate indicates the temporal average of the mean absolute value 
of spatial correlation between brain activity and 123 NeuroSynth meta-analytic 
maps. Box-plots: center line indicates the median; bounds of the box indicate the 

25th and 75th percentiles; whiskers indicate 1.5 × interquartile range; extreme 
values are shown as individual circles. P-values are obtained from repeated-
measures t-tests (two-sided) and FDR-corrected for multiple comparisons. See 
Supplementary Data 1 for full statistical reporting. Source data are provided as a 
source data file.
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Extended Data Fig. 7 | Propofol anaesthesia moves human functional 
connectivity away from wakefulness and closer to macaque functional 
connectivity in PCA space. (a) Low-dimensional projection of the human 
(propofol dataset) and macaque functional connectivity, in the space of the first 
two principal axes of variation from Principal Components Analysis. Each circle 
represents the FC from one human, with colour reflecting condition (awake, 
recovery, or propofol anaesthesia). Each diamond represents FC from one 
macaque, with colour representing the dataset (awake or anaesthetised).  
(b) Projection of the data from (a) onto PC2. (c) Distribution of Euclidean 
distances from awake humans’ FC patterns, in the human dataset, along PC2 as 

shown in (b). N = 256 (16 × 16). (d) Distribution of Euclidean distances between 
the human data and awake macaques’ FC patterns, along PC2. N = 304 (16 × 19) 
pairs of data-points. (e) Distribution of Euclidean distances between the human 
data and anaesthetised macaques’ FC patterns, along PC2. N = 144 (16 × 9) pairs 
of data-points. Box-plots: center line indicates the median; bounds of the box 
indicate the 25th and 75th percentiles; whiskers indicate 1.5 × interquartile range. 
P-values are obtained from repeated-measures t-tests (two-sided) and FDR-
corrected for multiple comparisons. See Supplementary Data 2 for full statistical 
reporting. Source data are provided as a source data file.
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